最適なアクションプランを提案、「Wide Learning」の新技術を開発

購入を高めるマーケティング施策や不良品を削減する機械制御方針などをAIが立案

 

 株式会社富士通研究所(注1)(以下、富士通研究所)は、富士通株式会社(注2)(以下、富士通)のAI技術「FUJITSU Human Centric AI Zinrai」の中核技術である「Wide Learning(ワイドラーニング)」を拡張し、最適なアクションプランを提案するAI技術を開発しました。

 例えば、従来のマーケティングの分野では、商品を購入する見込みが高い顧客を予測するためにAIが活用されてきましたが、実際の現場では、予測だけではなく、購入の可能性を高めるアクションの決定にもAIを活用したいという課題があります。そのため、今回、富士通研究所が2018年9月に発表したAI技術「Wide Learning」を拡張し、購入者の割合が高く、顧客数が多いセグメントとアクションの組み合わせを抽出する技術を新規に追加しました。

 新技術により、重要な顧客を判断するだけでなく、最適なマーケティング施策までも自動で決定することが可能になるため、マーケティング業務の自動化が期待されます。また、マーケティング分野以外にも、製造現場での不良品を減らすための機械の自動制御や、金融分野における債務不履行を防ぐための借入限度額の自動設定、ヘルスケアでは健康を維持するための運動や食事の提案など、様々な業務でのアクション決定の自動化を促進します。

■開発の背景

 近年、様々な業務にAIを活用して効率化を図る事例が増加しています。例えば、商品を購入する可能性の高い顧客の予測や、製造ラインでの不良品発生の予測などでAI活用が進んでいます。今後は、予測された顧客層や製造装置の状態などに対して、実際に購入につながる可能性が高いアクションや不良品を減らすためのアクションをAIが適切に提案することで、売上の伸長や安定した生産などに貢献することが期待されています。

■課題

 マーケティング分野の顧客へのプロモーションを例とした場合、一般的な従来のやり方として、データ項目(「顧客の属性」、「過去の行動履歴」、「アクションの実施履歴」)の組み合わせを使って過去のデータを分析します。アクションプランを決める際には、購入率が高く顧客数が多いセグメント(「顧客の属性」、「過去の行動履歴」のデータ項目からなる組み合わせ)に対して、購入につながると思われるアクションを推定しています。

 ただし、通常、マーケティングには50種類以上のセグメントに関わるデータ項目があるといわれており、その組み合わせは1,000兆通り以上(注3)となります。従来は、その中から数十個のセグメントを選別した上で、それぞれのセグメントに対し有効なアクションを推定するに留まっています。今後は、最小限のアクションで、より多くの顧客に対し購入率が高まるような最も効率的なデータ項目の組み合わせを見つけることで、これまで以上に有効なマーケティング施策を行うことが必要です。

 ※図1は添付の関連資料を参照

 ※以下は添付リリースを参照

 

 

リリース本文中の「関連資料」は、こちらのURLからご覧ください。

図1

https://release.nikkei.co.jp/attach_file/0519094_01.jpg

添付リリース

https://release.nikkei.co.jp/attach_file/0519094_02.pdf